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Abstract. We consider a superconducting material that exists in the liquid state, more precisely, in which
the Meissner-Ochsenfeld effect persists in the liquid state. First, we investigate how the shape of such
a hypothetical Meissner liquid will adapt to accomodate for an applied external field. In particular, we
analyse the case of a droplet of Meissner fluid, and compute the elongation of the droplet and its quadrupole
frequency as a function of the applied field. Next, the influence of an applied field on the flow of the
liquid is studied for the case of a surface wave. We derive the dispersion relation for surface waves on
an incompressible Meissner fluid. We discuss some candidate realizations of the Meissner fluids and for
the case of a superconducting colloid discuss which regime of wave lengths would be most affected by the
Meissner effect.

PACS. 47.37.+q Hydrodynamic aspects of superfluidity; quantum fluids – 74.25.Nf Response to electro-
magnetic fields – 74.20.De Phenomenological theories

1 Introduction

The superconducting materials readily available to man
are all solids. Both for conventional superconductors such
as mercury and for high-temperature superconductors, the
critical temperature lies well below the melting temper-
ature. Nevertheless a crystalline substrate is no neces-
sary prerequisite for superconductivity. Even for the case
of phonon-mediated superconductivity, it can be argued
that liquid metals also exhibit phonons [1]. Indeed, for the
case of dense liquid metallic hydrogen, a superconducting
phase has been predicted [1,2].

In this contribution, we investigate how a liquid su-
perconductor would respond to applied magnetic fields.
More precisely, we consider a Meissner liquid, since we
are interested in the magnetic response rather than the
electric response. A candidate realization of a Meissner
fluid might be a suspension of superconducting particles.
In references [3,4], such a suspension of micron-sized su-
perconducting cuprate particles in liquid nitrogen was in-
vestigated, and when those particles were coated with a
layer of ice, acting as a surfactant preventing the particles
from coagulating, a Meissner liquid state was reported.

The basic property of the Meissner fluid is its capabil-
ity to expell magnetic flux B from its bulk by supporting
a persistent surface electric current Js. In type II super-
conductors above the first critical field, the flux is incom-
pletely expelled. Here, we consider type I superconductors
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or type II superconductors below the first critical field. In
reference [5], it was shown that when equilibrium is dis-
rupted, B and Js relax back to (new) equilibrium values
with a characteristic time of τ = 10−15 s. The time scale
for the hydrodynamic motion of a fluid surface (as deter-
mined by the fluid’s density and surface tension) is much
slower, and this allows to separate the dynamics of the
currents and magnetic fields from that of the fluid sur-
face. Hence, for the different problems investigated in the
present study, we assume that at each time the magnetic
field has reached its equilibrium value for the given surface
deformation of the fluid [6].

We start in Section 2 with the study of the shape de-
formation of a droplet of incompressible Meissner liquid
placed in a uniform external magnetic field. From the en-
ergetics of the optimal shape we calculate the quadrupole
mode oscillation frequency. In Section 3, we investigate
the higher-mode frequencies by neglecting curvature and
modeling surface waves on a Meissner liquid. We derive
the modification of the wave dispersion by a magnetic field
parallel with the surface.

2 Meissner droplet

In the absence of gravity, a fixed volume of liquid will form
a spherical droplet to minimize surface tension. When a
magnetic field is applied on a droplet of Meissner fluid, the
fluid will magnetize in order to expell the magnetic flux.
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The energy associated with this magnetization is expected
to be smallest for a cigar-shaped droplet with the axis of
cylindrical symmetry along the magnetic field. However,
deforming the droplet into a prolate spheroid will also in-
crease the surface tension energy. The optimal shape of
the droplet can be found by balancing the magnetic and
surface tension energies.

As possible shapes we will consider prolate spheroids
with the major axis parallel to the applied magnetic field.
The variational parameters determining the droplet shape
are a, the equatorial radius or semiminor axis, and c, the
semimajor axis. We denote the applied magnetic field by
Ha. The droplet responds to the external field by mag-
netizing. The magnetization field M is zero outside and
nonzero inside the droplet. Since then ∇ ·M is nonzero at
the droplet surface, magnetic charges are induced on the
surface. These charges give rise to a demagnetization field
Hd.

Inside the droplet, the demagnetization field is
straightforwardly related to the magnetization through
Hin

d = −n(a, c)M where n(a, c) is the demagnetizing fac-
tor for a prolate spheroid [7]:

n(a, c) =
(

1 − c2

α2

)[
1 − c

2α
ln
(
c+ α

c− α

)]
, (1)

where α =
√
c2 − a2 is the focus distance. The total mag-

netic flux is

B = µ(Ha + Hd + M), (2)

with µ the vacuum permeability. Since inside the Meissner
fluid B has to be zero, we find that the required magneti-
zation satisfies

M = − 1
1 − n(a, c)

Ha, (3)

in agreement with the result of reference [8].
To find the demagnetization field Hout

d outside the
droplet, we solve ∇×Hout

d = 0 (since there are no induced
currents in the volume outside the droplet). This implies
that the outside demagnetization field can be written as
the gradient of a scalar magnetic potential Hout

d = −∇ψ.
The boundary conditions are that Hd → 0 at infinity
and that the tangential component of Hd is continuous
along the boundary of he droplet. Equivalently, we can
use that the normal component of the magnetic flux is
continuous accross the boundary. The natural coordinate
system to express these boudary conditions are the prolate
spheroidal coordinates {η, θ, φ}. The droplet boundary is
then defined by fixing η = ηb. The equation for the scalar
magnetic potential becomes [9]

1
α2(sinh2 η + sin2 θ)

[
∂2ψ

∂η2
+ coth η

∂ψ

∂η

+
∂2ψ

∂θ2
+ cot θ

∂ψ

∂θ

]
= 0. (4)

The solution of this equation can be found by separation
of variables, yielding

ψ (η, θ) =
∞∑

n=0

AnQn(cosh η)Pn(cos θ), (5)

where Pn and Qn are the Legendre functions of the first
and second kind, and the An are integration constants.
The boundary condition Hd → 0 at infinity has already
been used. The second boundary condition is

Hout
d · eη

∣∣
η=ηb

= [1 − n(a, c)]M · eη|η=ηb
, (6)

where eη is the unit vector in the η direction. This corre-
sponds to

− eη·∇
∞∑

n=0

AnQn(cosh η)Pn(cos θ)

∣∣∣∣∣
η=ηb

=

Ha
sinh ηb cos θ√

sinh2 ηb + sin2 θ
. (7)

We find An�=1 = 0 and

A1 = −Haα

[
cα

a2
− ln

(√
c+ α

c− α

)]−1

. (8)

The demagnetisation field outside the droplet is then

Hout
d (η, θ) =

−Ha[
cα
a2 − ln

(√
c+α
c−α

)]√
sinh2 η + sin2 θ

×
{
cos θ

[
− coth η + ln

(
coth

η

2

)
sinh η

]
eη

+ sin θ
[
1 + cosh η log(tanh

η

2
)
]
eθ

}
. (9)

Figure 1 depicts the various contributions to the magnetic
flux: the magnetization, the demagnetization field, and the
magnetic flux. The magnetic flux remains tangential to the
surface, flowing around the boundary of the droplet.

To calculate the energy difference EM between the un-
magnetized and the magnetized droplet of a given, fixed
shape with shape parameters a and c, we use the ther-
modynamic potential Ũ = U + H · B with U the internal
energy, such that dŨ = B · dH and

EM (a, c) =
∫ [∫ Ha

0

B(r) · dH(r)

]
dr. (10)

Using the results (2), (9) for the fields, the expression sim-
plifies to

EM (a, c) =
1

1 − n(a, c)
µH2

a

2
V,

where V = 4πa2c/3 is the volume of the droplet. This
term would favour, for a given volume, a more elongated
spheroid. It is counteracted by the surface tension energy
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Fig. 1. (Color online, 2 column) Panel (a) shows the magnetization, which is only present inside the spheroidal droplet
(shaded area), and which is equal to −nHa. The demagnetisation field Hd is shown in panel (b). The total magnetic flux
B = µ(Ha + Hd + M) is shown in panel (c). All arrows in panels (a) and (c) are scaled by the same factor, those in panel (b)
are scaled by twice that amount for visibility.

ES = σS with σ the surface tension and S the surface of
the spheroidal droplet. This evaluates to

ES(a, c) = 2πσ

⎡
⎣a2 + ac

sin−1
(√

1 − a2/c2
)

√
1 − a2/c2

⎤
⎦. (11)

To find the optimal surface, the total energy ES + EM

needs to be minimized as a function of {a, c} with the
constraint of constant volume. If r0 is the radius of a
spherical droplet with volume V , we can introduce di-
mensionless parameters ã = a/r0 and c̃ = c/r0. The
constraint of constant volume then allows to eliminate
one of the variational parameters since V = 4πa2c/3 =
4πr30/3 leads to c̃ = ã−2. Writing the total energy as
Ẽ = (ES + EM )/(2πσr20) then leads to

Ẽ(ã) =
Γ

1 − n(ã)
+ ã2 +

sin−1(
√

1 − ã6)
ã
√

1 − ã6
, (12)

where Γ is a dimensionless parameter expressing the ap-
plied magnetic field

Γ =
µH2

ar0
3σ

(13)

and

n(ã) = − ã6

1 − ã6

[
1 − 1

2
√

1 − ã6
ln

(
1 +

√
1 − ã6

1 −√
1 − ã6

)]
.

(14)
Note that ã = 1 corresponds to the spherical droplet, and
we need to find 0 < ã < 1.

In Figure 2 the value of ã that minimizes the energy,
ã0, is plotted as a function of the magnetic field in reduced
units. The surface tension of a Meissner liquid contains a
contribution σSC coming from the interface between the
superconductor and the normal state; this should be pro-
portional to the difference between the coherence length

Fig. 2. (Color online) The droplet shape, characterized by the
semiminor axis expressed in units r0 of the spherical droplet
with the same volume, is shown as a function of the magnetic
field, expressed through Γ = µH2

ar0/(2σ). In the inset, the
oscillation frequency of the quadrupole mode (in units of ω0 =√

3σ/(2ρr0)) is shown as a function of Γ . The limiting value
for a spherical droplet is given.

and the penetration depth. There is also a contribution σL

from the liquid-vapour interface. For the Meissner liquid
reported in reference [3], the surface tension is estimated
to be of the order of σ = 10−3 J/m2. For a 1 mm droplet,
the applied magnetic flux corresponding to Γ = 1 is then
of the order millitesla. Thus, fields reasonably below the
critical field will induce a non-negligible deformation of
the droplet. The smaller the droplet, the more it resists
shape deformations.

A Taylor expansion of the energy around the minimum
allows to find the oscillation frequency of the quadrupole
mode of the droplet. We equate the second order term
in the expansion with a harmonic oscillation around the
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optimal shape,

ρV ω2 = 2πσ
∂2Ẽ

∂ã2

∣∣∣∣∣
ã0

⇒ ω =

√√√√ 3σ
2ρr30

∂2Ẽ

∂ã2

∣∣∣∣∣
ã0

. (15)

Here ρ is the density of the Meissner liquid. The de-
pendence of the frequency on the magnetic field in re-
duced units, Γ , is shown in the inset of Figure 2. The
frequency is expressed in units ω0 =

√
3σ/(2ρr0). In the

limit of spherical droplets (Ha → 0) the frequency con-
verges to ω/ω0 = 4

√
2/5. For a r0 =1 mm droplet with

σ = 10−3 J/m2 and ρ = 103 kg/m3, the unit ω0 corre-
sponds to a frequency of 39 Hz. Increasing the magnetic
field deforms the bubble, and also stiffens the oscillation
frequency.

3 Surface waves on a Meissner fluid

The quadrupole oscillation mode of the droplet is one par-
ticular realization of surface waves. In this section, we
investigate how the surface waves on an infinitely deep
Meissner fluid are influenced by an applied magnetic field
parallel to the surface and parallel to the propagation di-
rection of the wave (a field normal to the propagation
direction of the wave would be parallel to the wave fronts
and would not induce magnetic charges on the surface —
thus it would not alter the wave dispersion). Here, we con-
sider small-amplitude waves. The surface of the liquid is
characterized by ζ(x) = α sin(kx) where the flat surface
corresponds to the xy-plane (at z = 0), α is the wave
amplitude, and k = 2π/λ is the wave number. The an-
gle between the tangent to the surface and the horizontal
plane is

θ(x) = arctan[ζ′(x)] = αk cos(kx) + O(α3). (16)

3.1 Demagnetization field

When the surface of the fluid is flat and the applied field
Ha is parallel to the surface, the magnetization exactly
cancels Ha = Haex to achieve the Meissner state. How-
ever, when a wave is present, the magnetization will in-
duce surface magnetic charge on the rising and descending
slopes of the wave, as illustrated in panel (a) of Figure 3.
The shading of the liquid in this figure also illustrates the
concentration of this magnetic charge ∇ · M, strongest at
the slopes of the wave. As in a regular magnetized object,
this gives rize to a demagnetization field Hd, calculated
below and shown in panel (b) of Figure 3. The resulting
total flux is shown in panel (c) of that Figure 3, and, as
calculated below, follows the contour of the surface wave.

To find the magnetic field H(x, z) in this case, we
decompose this field in a component H// tangential to

Fig. 3. (Color online) The magnetization of a Meissner fluid
with a surface wave is shown in panel (a); the applied field is
parallel to the surface and to the wave propagation direction.
The magnetization induces surface charges on the rising and
descending wave slopes, as indicated. The shading (from dark
blue — low to light green — high) indicates the concentration
of magnetic charge. In panel (b) and (c), the demagnetization
field and the total magnetic flux are shown, respectively.

the surface and a component H⊥ normal to the surface.
For a small-amplitude wave, H⊥ will be of order α and
H// ≈ |Ha| up to second order in α. The demagnetization
field Hd = H−Haex at the surface of the wave can then
be written as

Hd [x, ζ(x)] =
{
H// cos [θ(x)] −H⊥(x) sin [θ(x)] −Ha

}
ex

+
{
H// sin[θ(x)] +H⊥(x) cos[θ(x)]

}
ez, (17)

or, expanding with respect to α,

Hd [x, ζ(x)] =
[
−Ha

1
2
α2k2 cos2(kx)−H⊥(x)αk cos(kx)

]
ex

+ [Haαk cos(kx) +H⊥(x)] ez + O(α3). (18)

For the calculation of the energy associated with the mag-
netization, we need to find the demagnetization field inside
the fluid. As a trial solution, we use

Hin
d (x, z) = h(x)ek(z−ζ(x)). (19)

That is, we assume an exponential decay into the fluid
with the wave length of the surface wave as a characteristic
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scale. In the direction of propagation of the wave, we need
to find h(x) = hx(x)ex + hz(x)ez . The ansatz (19) allows
to satisfy ∇× Hin

d = 0, which reduces to

∂hz(x)
∂x

− hz(x)αk2 cos(kx) = khx(x), (20)

with boundary conditions h(x) = Hd [x, ζ(x)] and h(x) =
h(x+ λ). This can be solved straightforwardly, yielding

Hd [x, z < ζ(x)] = Ha
α2k2

2
cos2(kx)

× exp{k [z − α sin(kx)]}ex (21)

for the demagnetization field inside the liquid.

3.2 Magnetic energy

Consider a surface of fluid of length Ly in the y-direction
and Lx = pλ (p ∈ N) in the x-direction. The energy differ-
ence Emag between the unmagnetized (Ha = 0) and the
magnetized case can be written as

Emag =
µ

2

∫
z<ζ(x)

Ha · Hdd
3r +

µ

2

∫
H2

ad
3r. (22)

The second term represents the energy of swichting on
the applied magnetic field, and does not depend on the
presence of a surface wave. The first term evaluates to

Emag =
µH2

a

2
α2k

2
Ly

∫ Lx

0

dx cos2(kx)

=
1
4
µH2

a

2
k LxLy α

2.

Thus, the magnetic energy per unit surface required to
establish the Meissner state when there is a surface wave
with wave number k and amplitude α is (to order α3)
given by

EM =
µH2

a

8
kα2. (23)

3.3 Wave dispersion

To find the dispersion relation of a surface wave on an
infinitely deep Meissner fluid, we follow the Hamiltonian
procedure outlined in reference [10]. The kinetic energy
per unit surface, associated with the surface wave is

EK =
1
4
ρ

k
α̇2. (24)

When the flat surface is deformed, restoring forces tend
to pull it flat again. These restoring forces can be related
to the surface tension energy, per unit surface:

ES =
1
Lx

Lx∫
0

1
2
σ

(
∂ζ(x)
∂x

)2

dx

=
1
4
σk2α2, (25)

and to the gravitational energy, per unit surface:

EG =
1
4
ρgα2. (26)

In a Meissner liquid, subjected to a magnetic field par-
allel to the surface wave propagation direction, also the
magnetic energy (23) gives rise to a restoring force. The
(classical) Hamiltonian associated with the surface wave
of amplitude α is then given by the sum of (24), (25), (26)
and (23):

H =
1
4
ρ

k
α̇2 +

(
1
4
σk2 +

1
4
ρg +

1
4
µH2

a

2
k

)
α2. (27)

This expression is valid for small-amplitude oscillations,
and leads to a dispersion relation

ω(k) =

√
σk3

ρ
+
µH2

a

2
k2

ρ
+ gk. (28)

The effect of the magnetic field dominates when µHa �√
µρg/k and µHa � √

µσk. Taking again σ = 10−3 J/m2

and ρ = 103 kg/m3, and a magnetic field of µHa = 100 G,
we find that the Meissner contribution to the dispersion
dominates for 102 m−1 � k � 105 m−1. The experimental
setup of reference [4] would allow to probe this range of
wave lengths. Surface waves can be detected by reflecting a
laser beam off the surface of the Meissner fluid and noting
the displacement of the laser spot as a function of time
and space.

4 Conclusion

Fluids with remarkable magnetic response properties, such
as ferrofluids, have sparked a lot of interest. Here, we in-
vestigate how a fluid superconductor, a Meissner fluid,
would react to an applied magnetic field. Even though
such Meissner fluids are not yet accessible, candidate re-
alizations from theory [2] and recent experiments [3] can
be found.

When such a fluid superconducting material is placed
in an applied magnetic field, it will flow to adapt its shape
and minimize the energy required to expell the magnetic
flux. In this contribution, we focused on a single droplet
of Meissner fluid and derived the deformation of such a
droplet due to an applied magnetic field as well as the
associated quadrupole oscillation frequency. Inversely, im-
posing a hydrodynamic flow, for example by generating a
surface wave, will alter the energetics and thus the disper-
sion of the wave. We calculated how the dispersion of the
surface wave is changed due to the presence of a magnetic
field, applied parallel to the surface and to the propaga-
tion direction of the wave. The change in the dispersion is
predicted to be relevant for the wave length range thought
to be achievable in a setup such as [3].
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